Appendix 2. Sources and Procedures

Life Expectancy at birth

Life expectancy is defined as “the average number of years of life which would remain for males and females reaching the ages specified if they continued to be subjected to the same mortality experienced in the year(s) to which these life expectancies refer” (United Nations, 2000). Most data for the period 1980-2015 come from the Human Development Reports (UNDP, 2010 and 2016) while the World Bank (World Development Indicators) provides data for 1960-1975 (exceptionally completed with data from UNESCO) and the United Nations’ Demographic Yearbook Historical Supplement (United Nations, 2000) for the 1950s. Pre-1950 estimates come mostly from Riley (2005b), Flora (1983), and the OxLAD database for Latin America (Astorga et al., 2003), completed with the national sources listed below. Nonetheless, for Most OECD countries (namely, Europe, the European Offshoots –Australia, Canada, New Zealand-, plus Israel, Japan, Korea, and Taiwan), the Human Mortality Dataset https://www.mortality.org/ (HMD hereafter) has been preferred, completed with the Clio-Infra Dataset https://www.clio-infra.eu/.

Occasionally, dearth of data has forced me to introduce some assumptions for the period before the epidemiological or health transition that, in developing regions, particularly those of South Asia and Sub-Saharan Africa, often started during the Interwar years (Omran, 1971; Riley 2005b, 2005c). In particular, I have accepted Riley’s (2005a, p. 539) assumption that “the average of all life expectancy estimates of acceptable quality for countries in a region provides the best available gauge of the pretransition average for the entire region”.

Maximum and the minimum values for the life expectancy index were established at 85 and 20 years, respectively. A “floor” of 25 years has been accepted as the minimum historical value for life expectancy at birth. Such a “floor” precludes a zero value for the transformed life expectancy index and, consequently, for the HIHD.

North Africa.
Algeria, 1913-1925, and 1938, Clio-Infra. 1900-1929, inferred from the infant survival rate (ISR, that is, 400 –as the maximum infant mortality rate per thousand- less the country’s infant mortality rate). Egypt, 1929-1938, from Fargues (1986); 1913, assumed to be as Tunisia’s; and 1900, as Algeria’s. Libya, 1900-1938, assumed to be identical to Egypt’s. Morocco, 1900-1938, assumed to be as Algeria’s, except 1913, as Tunisia’s. Tunisia, 1900, 1929, assumed to be the same as Algeria. 1913, 1925, Conté (1973), cited in Riley (2005); 1930s, Clio-Infra.

West Africa. Figures for 1938 are backwards projected with estimates inferred from heights and infant survival rates (ISR), for Benin, Burkina Faso, Côte d’Ivoire, Gambia, Ghana (but for 1913), Guinea, Guinea-Bissau, Liberia, Mali, Nigeria (but for 1929, from Ayeni 1976), Senegal (but for 1929), and Sierra Leone (but for 1929). Mauritania’s and Niger’s assumed to identical to Mali’s. Togo’s assumed to be as Benin’s, but Benin in 1913, as Ghana’s.
East Africa. Data for 1938 backwards projected with estimates inferred from heights and ISR, for Burundi, Ethiopia, Rwanda, Somalia, and Tanzania. Djibouti’s assumed to be as Ethiopia’s. Riley (2005b) provides estimates of 23.9 years for Kenya and Uganda in the 1930s, so I assigned the minimum historical value of 25 years to these countries over 1870-1929. Sudan’s was assumed to be as Kenya’s.

Southern Africa. Data for 1938 backwards projected with estimates inferred from heights and ISR, for Angola, Botswana (1913), Malawi, Mauritius (1870-1913), Namibia (1870-1880), South Africa (1870), Swaziland (1929), and Zambia. Namibia, 1890-1900, assumed to be the same as for blacks in Cape Colony, from Simkins et al. (1989); 1929-1938, from Notkola et al. (2000), estimated from Northern Namibia’s figures adjusted with the ratio all Namibia to Northern Namibia c. 1960. South Africa, 1880-1913, estimates from Simkins et al. (1989). For Zimbabwe, Riley (2005b), following Condé (1973), assigned 26.4 to the 1930s, so I have assigned the minimum goalpost over 1870-1929. Botswana’s (but for 1913), Lesotho’s, and Swaziland’s (but for 1929), were assumed to be identical to Namibia’s. Madagascar’s, assumed to as Mauritius’s and Mozambique’s as Malawi’s. Mauritius, 1930s, Clio-Infra.

Americas.

For Latin America, most data come from Arriaga (1968) and the MOxLAD database (Astorga et al. 2003) (supplemented with the working sheets prepared by Shane and Barbara Hunt which have been kindly provided by Pablo Astorga). In addition, national sources used are:

- Argentina, 1870-1890, Recchini de Lattes and Lattes (1975).
- Chile, 1890-1900, assumed to have evolved along Argentina; 1913, 1930s, Clio-Infra; 1950-2005, Díaz, Lüders, and Wagner (2016).
- Uruguay, 1870-1900, assumed to have evolved along Argentina;1900-1938, Ministerio de Salud Pública (2001),
- Life expectancy for Colombia, 1870-1900, Cuba, 1870-1900, Panama, 1880-1900, Honduras, 1890-1900, Puerto Rico, 1870-1890, and Venezuela, 1880-1900, has been assumed to evolve along Costa Rica.
- Ecuador, 1925-1938, assumed to evolve along Paraguay.
- Peru, 1913-1933, assumed to evolve along Bolivia.
- Puerto Rico, 1870-1890, assumed it evolves along Costa Rica; 1890, Riley (2005b); 1900-1938, UN (1993).
- Trinidad-Tobago, 1870-1900, assumed to evolve along Jamaica.
- Bahamas and Belize, 1870-1938, assumed to evolve along Jamaica.
- Barbados, St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines, and Surinam, 1870-1938, assumed to evolve along Trinidad and Tobago.
- St. Kitts and Nevis, 1950-1975, assumed to evolve as Surinam.
- Canada, 1870-1890, Clio-Infra; 1925-2010, HMD.
- U.S.A., 1870-1890, Haines (1994); 1913-1929, Clio-Infra; 1933-2015, HMD.

In the absence of life expectancy estimates for early years projecting the available figures with infant survival rates (ISR) has derived them for Panama, 1900-1929 and Guyana, 1950-1960. Such a procedure was also used to distribute the average life expectancy estimate for Argentina, 1869-1894.
Asia
Most pre-1950 estimates come from Riley (2005b) who claims that the earliest health transition started in the 1870/1890s when mean and median values were 27.5 and 25.1 years, respectively. Lower bound estimates for 1950 or 1940s levels were used for 1938. In the absence data, pre-1929 life expectancy at birth was assumed to be 25 years.
Bahrain, Oman, Qatar, UAR, and Yemen, 1913-1938, assumed to evolve along Kuwait. Brunei Darussalam, 1929-1938, assumed to evolve as Malaysia.
Cambodia, 1925-1929, assumed it evolved along China as they had similar levels in 1938; 1938, Siampos (1970), cited in Riley (2005b).
China, 1929, Caldwell et al. (1986), cited in Lavely and Wong (1998); 1930s, Clio-Infra.
Hong Kong SAR, 1900-1938, assumed to evolve along Taiwan.
India, 1880-1938, Clio-Infra; extrapolated to 1870 with Visaria and Visaria (1982); 1900 and 1925, McAlpin (1983).
Indonesia, 1929, Riley (2005b); 1930s, Clio-Infra.
Israel, 1950-1980, Clio-Infra; 1985-2010, HMD.
Japan, 1870, Riley (2005b); 1880, Janetta and Preston (1991); 1890-1900, Johansson and Mosk (1987); 1950-2015, HMD.
Jordan, 1929-1938, assumed to evolve as Syria’s.
Korea, 1913-2000, Clio-Infra; 2005-2015, HMD.
Laos, 1929, assumed to evolve as Vietnam.
Malaysia, 1929-1938, obtained by projecting 1950 level backwards with the infant survival rate.
Nepal, 1925-1933, assumed to evolve as India.
Singapore, 1929-1938, obtained by projecting 1950 level backwards with the infant survival rate.
Sri Lanka, 1890-1913, 1938, Langford and Storey (1993); 1929, Sarkar (1951)
Taiwan, 1890-1938, Cha and Wu (2002). The level assumed for 1890 by Cha and Wu, 25 years, accepted for 1870-1880. 1950, Glass and Grebenik (1967); 1955, Taiwan Official statistics; 1970-2010, HMD.
Turkey, 1870-1900 and 1925-1933 assumed to evolve as Greece’s; 1913, Pamuk (2007); 1938, Shorter and Macura (1982).

Oceania
Australia, 1870-1900, Whitwell et al. (1997); 1925-2015, HMD.
New Zealand (adjusted for Maori population up to 1950), 1870, Riley (2005b); 1880-1890, Glass and Grebenik (1967); 1950-2010, HMD.
Europe
Albania, 1870-1890, assumed to evolve along Greece; 1900-1933, assumed to evolve along Bulgaria.
Austria, 1870-1929, Clio-Infra; 1950-2010, HMD.
Belgium, 1870-2015, HMD.
Belarus, 1950s, Clio-Infra; 1960-2015, HMD.
Bulgaria, 1870-1890, assumed to move along Greece; 1913-1938, Clio-Infra; 1950-2010, HMD.
Croatia, 2005-2015, HMD.
Cyprus, 1870-1880, assumed to be identical to Greece; 1890, Riley (2005b); 1900-1938, Clio-Infra.
Czechoslovakia/Czechia, 1870-1938, Sbr (1962); 1890, Riley (2005b); 1950-2015, HMD.
Denmark, 1870-2015, HMD.
Finland, 1870, Kannisto et al. (1999); 1880-2015, HMD.
France, 1870-2015, HMD.
Germany, 1870-1890, Flora (1983); 1950s, Clio-Infra; 1960-2015, HMD.
Hungary, 1870-1890, assumed to evolve along Austria; 1950-2015, HMD.
Iceland, 1870-2015, HMD.
Ireland, 1850-1890, assumed to evolve along the U.K.; 1950-2015, HMD.
Italy, 1870, Felice et al. (2016); 1880-2010, HMD.
Latvia and Lithuania, 1925-1955, Clio-Infra; 1960-2010, HMD.
Luxembourg, 1913-1955, Clio-Infra; 1960-2010, HMD.
Netherlands, 1870-2015, HMD.
Norway, 1870-2015, HMD.
Portugal, 1850-1913, Leite (2005); 1925 (interpolated) and 1933, Valério (2001; I); 1929, Veiga (2005); 1938, United Nations (1993); 1950-2015, HMD.
Romania, 1870-1880, assumed to evolve along Greece, 1890-1890, and along Bulgaria, 1890-1929.
Russia, Pressat (1985) for European Russia, 1870-1913, and European Soviet Union, 1929-1938; 1950s, Clio-Infra; 1960-2015, HMD.
Slovakia, 1925, Clio-Infra; 1929-1938, Sbr (1962); 1950-2015, HMD.
Spain, 1870-1890, Felice et al. (2016); 1900, Dopico and Reher (1998); 1913-2015, HMD.
Sweden, 1870-2010, HMD.
Switzerland, 1870, Flora (1983); 1880-2010, HMD.
Ukraine, 1900, Mazur (1969); 1925-1955, Clio-Infra; 1960-2010, HMD.
United Kingdom, 1850-1900, Floud and Harris (1997); 1925-2015, HMD.
Yugoslavia, assumed to evolve along Greece, 1870-1880, and along Bulgaria, 1890-1929. For 1929 and 1938 life expectancy was estimated by projecting the available figures with infant survival rates for 1950.
Average Years of Education

Education attainment is measured by the average years of total schooling (primary, secondary, and tertiary) for population aged 15 and over. Most figures for 2015 and 2010 derive from the Human Development Reports 2016 and 2013 (UNDP, 2016, 2013). For 1870-2010, the most comprehensive database is the Clio-Infra dataset (https://www.clio-infra.eu/Indicators/AverageYearsofEducation.html) put together by Bas van Leeuwen, Jieli van Leeuwen-Li, and Péter Földvári in 2013, which provides decadal figures (years ending in 0). These figures come from historical reconstructions derived from national statistical offices for the post-1960 and the authors’ own estimates through the perpetual inventory method up to 1950. Clio-Infra database relies on Morrisson and Murtin (2009) dataset for 78 countries at 10-year intervals.

I completed the dataset with estimates for years ending in 5 between 1915 and 2005 from Földvári and van Leeuwen (2014) for Europe, while for the rest of the world have interpolated them on the basis of Barro and Lee (2013, version 2.2, updated on June 2018) average years of schooling for population aged 15 and over for 1950-2010, and Lee and Lee (2016) dataset for years of schooling for population aged 15-64, for 1915-1935. Specifically, for, say, 2005, the formula used is

$$Y_{2005} = \frac{(2\times X_{2005})}{(X_{2000} + X_{2010})} \times (Y_{2000} + Y_{2010}),$$

where Y represents the Clio-Infra values and X those of Barro and Lee (2013, v. 2.2).

I have assigned the values for 1915, 1930, 1935, and 1940 to my 1913, 1929, 1933, and 1938 benchmarks, respectively.

I have filled missing values for earlier years in Clio-Infra by projecting its levels with Lee and Lee (2016) estimates. This was the case for Barbados, Colombia, and Ecuador (1870); Cyprus and Serbia (1870-1880); Czechia and Romania (1870-1890); Iceland, Poland, Gambia, and Zambia (1870-1913); Haiti and Togo (1870-1925); D.R. Congo, Lesotho, Liberia, Libya, Swaziland, Afghanistan, Cambodia, and Jordan (1870-1938).

Lack of Clio-Infra 1950-2010 estimates for Belize, Albania, Croatia, Malta, Slovenia, Sudan, Bahrain, Brunei Darussalam, Hong Kong, Indonesia, Kuwait, Mongolia, Qatar, Taiwan, United Arab Emirates (U.A.E.), and Yemen led me to use Barro and Lee’s (2013, v. 2.2) figures for these countries. For Belize, Albania, Malta, Sudan, Hong Kong, Kuwait, Taiwan, and Yemen, Barro and Lee’s figures for 1950 were projected backwards to 1870 with Lee and Lee’s (2016) years of schooling.

Lastly, missing values for some countries before 1950 have been estimated by assuming they evolved along their neighbours:

Africa
Botswana, 1870-1913, and Namibia, 1870-1938, assumed to evolve as Lesotho; pre-1960 Burkina Faso, Chad, and Guinea, as Mali, Niger, and Sierra Leone, respectively; pre-1950 Burundi and Rwanda, as Uganda; pre-1950 CAR, Congo, and Gabon, as Cameroon; pre-1950 Mauritania as Senegal; pre-1950 Tanzania as Kenya; Seychelles, 1870-1913, as Mauritius. Guinea-Bissau, 1870-2010, was assumed to evolve as Guinea.
Americas
Bahamas, 1870-1990, assumed to evolve along Barbados and St. Kitts and Nevis and St. Vincent and the Grenadines, 1870-2005, as Trinidad-Tobago.

Asia
It has been assumed that pre-1929 Lebanon evolved as Cyprus; pre-1950 Laos as Cambodia; and pre-1950 Bahrain, Brunei-Darussalam, Qatar, Saudi Arabia, and United Arab Emirates (U.A.E.) as Kuwait.

Maximum and the minimum values are established at 15 and 0 years, respectively. However, the lowest historical value was set at 0.1 years of education. Such a ‘floor’ precludes a zero value for the transformed education index and, consequently, for the HIHD.
Per Capita GDP

GDP per head is expressed in 1990 Geary-Khamis dollars. Unless stated below, GDP per head data come from the Maddison Project Database (2018) [MPD2018], completed with Maddison (2006, 2010) and the Maddison Project Database 2013 [MPD2013] and, for Latin America since 1950, CEPAL (2009) and (2017) [http://interwp.cepal.org/]. Conference Board (2016) estimates have been accepted for China since 1950, specifically, the so-called “alternative” series. Otherwise, for specific countries shown below, per capita GDP levels for (usually) 1950 have been projected backwards with volume indices of real per capita GDP taken from historical national accounts.

Similarly to the cases of social indicators, I have assumed a lower bound for per capita GDP that has been set at G-K 1990 $ 300, which represents a basic level of physiological subsistence (Sagar and Najam, 1998; Milanovic et al., 2011), below both the World Bank’s extreme poverty threshold of G-K 1990 $ 1 a day per person and Maddison’s (2006) G-K 1990 $ 400 per capita.

Africa

Most pre-1950 estimates come from projecting the 1950 benchmark in the MDP2018 with Prados de la Escosura (2012) estimates. The GDP data set for Africa includes available estimates for the northern region and South Africa. In North Africa, 1870-1950, estimates come from Maddison (2006: 577-580) completed with some interpolations on the basis of my own indirect estimates. For Algeria, I interpolated the levels for 1890 and 1900. For Tunisia, I accepted Maddison estimates for 1913 and interpolated the rest of the benchmarks. In the case of Morocco, I found Maddison’s level for 1913 too low relative to Tunisia, and used my own estimates. For Egypt, Maddison figures were also used but re-scaled by accepting Pamuk (2006) level for 1950. In the case of South Africa, I deflated Stadler (1963) nominal GDP estimates for 1913-1950 with Alvaredo and Atkinson (2010) price index, and used population figures from Feinstein (2005: 257-8) to derive per capita GDP. Then, the estimates for 1913 were projected backwards to 1870 with my own indirect estimates.

Further assumptions were needed to fill missing values of GDP per head for some Sub-Saharan countries. Following Maddison’s approach, I assumed that growth trends for missing countries were similar to those of their neighbours. Thus, in the case of French Equatorial Africa (CAR, Congo, Gabon, and Chad), over 1870-1929, I assumed they grew as similar countries (coastal or landlocked, resource abundant or scarce) in French West Africa. Similarly, during the same period, Cameroon, Guinea-Bissau, and Togo were assumed to grow at the same rate of similar countries in West French Africa. Liberia was assumed to evolve as Sierra Leone over 1900-1913. I assumed The Gambia (1870-1913) and Sierra Leone (1870-1900) evolved alongside Ghana. In East Africa, I accepted Uganda’s pace of growth for Rwanda and Burundi (1913-1929) while Kenya’s pace of growth during 1870-1913 was assumed to be similar to Tanzania’s. Also, Ethiopia and Sudan were assumed to evolve as Egypt over 1870-1913. In southern Africa, Mozambique was accepted to evolve as Angola (1870-1900), and Zambia and Malawi (1913-1929) as Zimbabwe. Lastly, in the cases of Botswana and Lesotho (1913-1938), Namibia (1870-1929), and Swaziland (1870-1938), I accepted the growth rate for South Africa.
Americas

Argentina, Della Paolera et al. (2003), 1884-1950. I projected the resulting level for 1884 backwards 1875 with Cortés Conde (1997) growth rate and assumed the level of 1870 to be equal to that of 1875.

Brazil, 1870-1950, Goldsmith (1986).

Cuba, up to 1902, Santamaría (2005); 1902-1958, Ward and Devereux (2012); 1958-1990, MDP2018; 1990-2015, CEPAL (2017). An important caveat is that neither the MPD2018 benchmark level for 1990 (nor the MPD2013 or Maddison’s 2006, 2010) has been accepted. The reason is that, given the lack of PPPs for Cuba in 1990, Maddison (2006: 192) assumed Cuban per capita GDP was 15 per cent below the Latin American average. Since this is an arbitrary assumption, I started from Brundenius and Zimbalist’s (1989) estimate of Cuba’s GDP per head relative to six major Latin American countries (Argentina, Brazil, Chile, Colombia, Mexico, and Venezuela, LA6) in 1980 (provided in Astorga and Fitzgerald, 1998) and applied this ratio to the average per capita income of LA6 in 1980 Geary-Khamis dollars to derive Cuba’s level in 1980. Then, following Maddison (1995: 166), I derived the level for 1990 with the growth rate of real per capita GDP at national prices over 1980-1990 and reflated the result with the US implicit GDP deflator in order to arrive to an estimate of per capita GDP in 1990 at 1990 Geary-Khamis dollars. Interestingly, Cuba’s position relative to the US in 1929 and 1955 is very close to the one Ward and Devereux (2012) estimated using a different approach.

Puerto Rico, 1900-1940, Devereux (2017); 1940-1950, Anuario Estadístico de Puerto Rico (1955).

Central America (Costa Rica, El Salvador, Guatemala, Honduras, and Nicaragua), I derived the level for 1913 by assuming the growth over 1913-20 was identical to that of 1920-25, the latter derived from OxLAD database (Astorga et al. 2003).

Asia
Middle East (Iran, Iraq, Jordan, Lebanon, Palestine (Israel), Saudi Arabia, Syria, Yemen, and the Gulf (Bahrain, Kuwait, Oman, Qatar, UAE), 1870-1913, Pamuk (2006) Cambodia and Laos were assumed to evolve alongside Vietnam, 1870-1938. Korea, 1870-1913, MPD2013; 1913-1938, Cha and Kim (2006). I obtained the figures for 1880-1900 through log-linear interpolation. Myanmar, 1880-1890, assumed to evolve along India. Malaysia, 1870-1913, assumed to evolve along Indonesia. Philippines, 1890, Bourguignon and Morrisson (2002). Turkey, MPD2013. 1880, Altug et al. (2009) with 1890-1900 figures log-linearly interpolated. Taiwan, 1890-1900, assumed to evolve as China’s; 1900, Cha and Wu (2002). For the Middle East, Indochina (Cambodia, Laos, and Vietnam), and Hong Kong, I interpolated log-linearly the values for 1880-1900 and 1935-1938.

Oceania
New Zealand, 1870-1990, kindly provided by Les Oxley in private communication.

Europe
Index of Liberal Democracy

Varieties of Democracy [V-Dem] (Coppedge et al., 2018) provides the Liberal Democracy Index. It combines the electoral democracy index and the liberal component index. The former incorporates indices of freedom of association, expression, suffrage, and clean elections. The latter includes indices of equality before the law and individual liberty, judicial constraints on the executive, and legislative constraints on the executive.

The index ranges between 0, low, and 1, high. As for other dimensions of human development I have adopted a ‘floor’ level that in this case is 0.01.

Missing values for some countries, mostly before 1900, have been estimated by assuming they evolved along their neighbours and, exceptionally, were assigned the same values.

Africa
For most countries in Sub Saharan Africa, except Ethiopia, Liberia, Madagascar, and Tanzania, lacking estimates for 1870-1890, I have assigned the ‘floor’ value of 0.01. This assumption is consistent with their low values for 1913. In the case of South Africa, I assumed it evolved along the Orange Free State in Polity 2 (Polity 4 database) (Marshall et al., 2018).

Algeria, 1870-1890 assumed to evolve as Tunisia.
Cameroon, 1920-1960, assumed to evolve along Central African Republic.

Americas
Jamaica, 1870-1890, assumed to evolve along Cuba.
The Bahamas and Belize, 1950-2015, assumed to have the same values as Jamaica.
St. Kitts, St. Lucia, and St. Vincent and the Grenadines, 1950-2015, same values as Barbados.

Asia
Brunei Darussalam, same values as Malaysia.
Cambodia and Laos, 1870-1890, assumed to evolve along Vietnam.
Iraq, Jordan, Lebanon, and Syria, 1870-1913, assumed to evolve as Turkey.
Hong-Kong and Taiwan, assumed to evolve along China.
Qatar, 1870-1890, assume to evolve as Oman.
Sri Lanka, 1870-1890, assumed to evolve as India.
United Arab Emirates, 1870-1970, assumed to evolve as Qatar.
Yemen, 1870-1890, the ‘floor’ was accepted as the value for 1913 was 0.011.

Europe
Albania, 1870-1900, as an Ottoman colony, same values as Turkey.
Belgium, 1870-1890, I assumed it evolved as the average of Vanhanen Index of Democratization (Vanhanen, 2016) and Polity 2 (Marshall et al., 2018).
Czechoslovakia, 1870-1913, as part of Austria-Hungary, I used the average value of Austria and Hungary.
Ireland, 1870-1913, same values as the United Kingdom.
Poland, 1870-1913, same values as Russia.
Population

References

European Review of Economic History, 12, 393-430, 2008.

Alvaredo, F., and A.B. Atkinson, “Colonial Rule, Apartheid and Natural Resources: Top Incomes

Apostolides, A., “The Growth of Two Small Economies in the Great Depression: GDP
Estimation for Cyprus and Malta during the Interwar Period (1921-1938),” MPRA Paper
30276, 2011 http://mpra.ub.uni-muenchen.de/30276/

Arriaga, E. E., New Life Tables for Latin American Populations in the Nineteenth and Twentieth
Centuries, Population Monographs Series No. 3, Institute of International Studies,
University of California Berkeley, 1968.

Astorga, P. and V. Fitzgerald, “Statistical Appendix,” in R. Thorp, Progress, Poverty and
Exclusion An Economic History of Latin America in the 20th Century, 307-365, Inter-

History Database [OxLAD],” Oxford: Latin American Centre, Oxford University, 2003.
Available at: http://oxlad.qeh.ox.ac.uk/ now at: http://moxlad.fcs.edu.uy/

Ayeni, O., “Retrospective estimates of mortality from the Nigerian medical censuses of 1930-
1932: a research note”, Nigerian Journal of Economic and Social Studies 18, 461-469,
1976.

Banks, A. S., “Cross-National Time-Series Data Archive,” 2010
http://www.databanksinternational.com/

Baptista, A., Bases cuantitativas de la economía venezolana, 1830–1995, Fundación Polar,

Journal of Development Economics 104, 184–198 (2013) (Updated dataset v 2.1,
February 2016) http://www.barrolee.com/

Bértola, L., El PBI de Uruguay, 1870–1936 y otras estimaciones, Universidad de la República,

Bourbeau, J. Légaré and V. Émond, “New Birth Cohort Life Tables for Canada and Quebec,
available at: www.statcan.ca

Bourguignon, F. and C. Morrisson, “Inequality among World Citizens,” American Economic

históricas,” Pontificia Universidad Católica de Chile, Instituto de Economía, Documento

Brundenius C. and A. Zimbalist, The Cuban Economy: Measurement and Analysis of Socialist

http://www.bea.gov/industry/iotables/prod/table_list.cfm?anon=56082

Buyst, E., “New GNP Estimates for the Belgian Economy during the Interwar Period,” Review

Caldwell, J., M. Bracher, G. Santow, and P. Caldwell, “Population Trends in China—A
Perspective Provided by the 1982 Census,” in C. Li, ed., A Census of One Billion People,

Clio-Infra Dataset, https://www.clio-infra.eu/

Maddison Project Database, 2013 http://www.ggdc.net/maddison/maddison-project/home.htm

